题意比较简单,状态转移方程也比较容易得出:
f[i]=max{ f [ j ] }+p[i],(j的结束时间在i开始时间之前)
若i开始之前没有结束的j,则f[i]=p[i];
因数据量太大(n<=10000)因此必须优化,这里使用单调队列降低时间复杂度
首先按开始时间排序,队列里存的是编号,队列要求是开始时间严格递增,f[i]利润值严格递增,每次只需维护单调队列,就能将dp部分降到O(n),因插入队列是用到二分查找,所以总的时间为O(nlogn)
维护单调队列的思路:求f[i]时,从队头开始遍历,找到在i开始时间之前最后结束的j,然后将j之前的全部出队,插入时,首先根据i的结束时间二分查找出i可能插入的位置x,然后看该位置之后的f[x]小于等于f[i]的编号x全部删除,然后若i可以放在此处(两种情况:1.空队时,2.f[i]比f[x]小比f[x-1]大时,刚开始这个地方没处理好,WA了n次!!!),则将i插入单调队列。最后求出最大的f[i]即可。
/************************************************************************* > File Name: A.cpp > Author: Chierush > Mail: qinxiaojie1@gmail.com > Created Time: 2013年07月26日 星期五 10时52分21秒 ************************************************************************/#include#include #include #include #include #include #include #include